Copied to
clipboard

G = C24.133D4order 128 = 27

2nd non-split extension by C24 of D4 acting via D4/C4=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C24.133D4, C23.24SD16, C8:8(C22:C4), (C22xC8):17C4, (C2xC8).367D4, C2.1(C8:8D4), (C23xC8).20C2, C22:2(C4.Q8), (C22xC4).89Q8, C23.67(C4:C4), C22.4Q16:3C2, C23.744(C2xD4), (C22xC4).544D4, C4.69(C22:Q8), C22.43(C4oD8), C22.48(C2xSD16), C4.52(C42:C2), C23.7Q8.6C2, (C22xC8).562C22, (C23xC4).670C22, C22.109(C4:D4), (C22xC4).1329C23, C2.7(C23.25D4), C2.16(C23.7Q8), C2.6(C2xC4.Q8), (C2xC4.Q8):14C2, (C2xC4).83(C4:C4), (C2xC8).208(C2xC4), C4.86(C2xC22:C4), C22.90(C2xC4:C4), (C2xC4).187(C2xQ8), (C2xC4).1318(C2xD4), (C2xC4:C4).36C22, (C2xC4).551(C4oD4), (C2xC4).527(C22xC4), (C22xC4).480(C2xC4), SmallGroup(128,539)

Series: Derived Chief Lower central Upper central Jennings

C1C2xC4 — C24.133D4
C1C2C22C23C22xC4C23xC4C23xC8 — C24.133D4
C1C2C2xC4 — C24.133D4
C1C23C23xC4 — C24.133D4
C1C2C2C22xC4 — C24.133D4

Generators and relations for C24.133D4
 G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e4=d, f2=dc=cd, faf-1=ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, bf=fb, ce=ec, cf=fc, de=ed, df=fd, fef-1=e3 >

Subgroups: 316 in 168 conjugacy classes, 76 normal (18 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C8, C2xC4, C2xC4, C2xC4, C23, C23, C23, C22:C4, C4:C4, C2xC8, C2xC8, C22xC4, C22xC4, C22xC4, C24, C2.C42, C4.Q8, C2xC22:C4, C2xC4:C4, C22xC8, C22xC8, C22xC8, C23xC4, C22.4Q16, C23.7Q8, C2xC4.Q8, C23xC8, C24.133D4
Quotients: C1, C2, C4, C22, C2xC4, D4, Q8, C23, C22:C4, C4:C4, SD16, C22xC4, C2xD4, C2xQ8, C4oD4, C4.Q8, C2xC22:C4, C2xC4:C4, C42:C2, C4:D4, C22:Q8, C2xSD16, C4oD8, C23.7Q8, C2xC4.Q8, C23.25D4, C8:8D4, C24.133D4

Smallest permutation representation of C24.133D4
On 64 points
Generators in S64
(1 43)(2 44)(3 45)(4 46)(5 47)(6 48)(7 41)(8 42)(9 31)(10 32)(11 25)(12 26)(13 27)(14 28)(15 29)(16 30)(17 63)(18 64)(19 57)(20 58)(21 59)(22 60)(23 61)(24 62)(33 50)(34 51)(35 52)(36 53)(37 54)(38 55)(39 56)(40 49)
(1 56)(2 49)(3 50)(4 51)(5 52)(6 53)(7 54)(8 55)(9 59)(10 60)(11 61)(12 62)(13 63)(14 64)(15 57)(16 58)(17 27)(18 28)(19 29)(20 30)(21 31)(22 32)(23 25)(24 26)(33 45)(34 46)(35 47)(36 48)(37 41)(38 42)(39 43)(40 44)
(1 43)(2 44)(3 45)(4 46)(5 47)(6 48)(7 41)(8 42)(9 21)(10 22)(11 23)(12 24)(13 17)(14 18)(15 19)(16 20)(25 61)(26 62)(27 63)(28 64)(29 57)(30 58)(31 59)(32 60)(33 50)(34 51)(35 52)(36 53)(37 54)(38 55)(39 56)(40 49)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)(49 53)(50 54)(51 55)(52 56)(57 61)(58 62)(59 63)(60 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 24 47 16)(2 19 48 11)(3 22 41 14)(4 17 42 9)(5 20 43 12)(6 23 44 15)(7 18 45 10)(8 21 46 13)(25 40 57 53)(26 35 58 56)(27 38 59 51)(28 33 60 54)(29 36 61 49)(30 39 62 52)(31 34 63 55)(32 37 64 50)

G:=sub<Sym(64)| (1,43)(2,44)(3,45)(4,46)(5,47)(6,48)(7,41)(8,42)(9,31)(10,32)(11,25)(12,26)(13,27)(14,28)(15,29)(16,30)(17,63)(18,64)(19,57)(20,58)(21,59)(22,60)(23,61)(24,62)(33,50)(34,51)(35,52)(36,53)(37,54)(38,55)(39,56)(40,49), (1,56)(2,49)(3,50)(4,51)(5,52)(6,53)(7,54)(8,55)(9,59)(10,60)(11,61)(12,62)(13,63)(14,64)(15,57)(16,58)(17,27)(18,28)(19,29)(20,30)(21,31)(22,32)(23,25)(24,26)(33,45)(34,46)(35,47)(36,48)(37,41)(38,42)(39,43)(40,44), (1,43)(2,44)(3,45)(4,46)(5,47)(6,48)(7,41)(8,42)(9,21)(10,22)(11,23)(12,24)(13,17)(14,18)(15,19)(16,20)(25,61)(26,62)(27,63)(28,64)(29,57)(30,58)(31,59)(32,60)(33,50)(34,51)(35,52)(36,53)(37,54)(38,55)(39,56)(40,49), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,24,47,16)(2,19,48,11)(3,22,41,14)(4,17,42,9)(5,20,43,12)(6,23,44,15)(7,18,45,10)(8,21,46,13)(25,40,57,53)(26,35,58,56)(27,38,59,51)(28,33,60,54)(29,36,61,49)(30,39,62,52)(31,34,63,55)(32,37,64,50)>;

G:=Group( (1,43)(2,44)(3,45)(4,46)(5,47)(6,48)(7,41)(8,42)(9,31)(10,32)(11,25)(12,26)(13,27)(14,28)(15,29)(16,30)(17,63)(18,64)(19,57)(20,58)(21,59)(22,60)(23,61)(24,62)(33,50)(34,51)(35,52)(36,53)(37,54)(38,55)(39,56)(40,49), (1,56)(2,49)(3,50)(4,51)(5,52)(6,53)(7,54)(8,55)(9,59)(10,60)(11,61)(12,62)(13,63)(14,64)(15,57)(16,58)(17,27)(18,28)(19,29)(20,30)(21,31)(22,32)(23,25)(24,26)(33,45)(34,46)(35,47)(36,48)(37,41)(38,42)(39,43)(40,44), (1,43)(2,44)(3,45)(4,46)(5,47)(6,48)(7,41)(8,42)(9,21)(10,22)(11,23)(12,24)(13,17)(14,18)(15,19)(16,20)(25,61)(26,62)(27,63)(28,64)(29,57)(30,58)(31,59)(32,60)(33,50)(34,51)(35,52)(36,53)(37,54)(38,55)(39,56)(40,49), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,24,47,16)(2,19,48,11)(3,22,41,14)(4,17,42,9)(5,20,43,12)(6,23,44,15)(7,18,45,10)(8,21,46,13)(25,40,57,53)(26,35,58,56)(27,38,59,51)(28,33,60,54)(29,36,61,49)(30,39,62,52)(31,34,63,55)(32,37,64,50) );

G=PermutationGroup([[(1,43),(2,44),(3,45),(4,46),(5,47),(6,48),(7,41),(8,42),(9,31),(10,32),(11,25),(12,26),(13,27),(14,28),(15,29),(16,30),(17,63),(18,64),(19,57),(20,58),(21,59),(22,60),(23,61),(24,62),(33,50),(34,51),(35,52),(36,53),(37,54),(38,55),(39,56),(40,49)], [(1,56),(2,49),(3,50),(4,51),(5,52),(6,53),(7,54),(8,55),(9,59),(10,60),(11,61),(12,62),(13,63),(14,64),(15,57),(16,58),(17,27),(18,28),(19,29),(20,30),(21,31),(22,32),(23,25),(24,26),(33,45),(34,46),(35,47),(36,48),(37,41),(38,42),(39,43),(40,44)], [(1,43),(2,44),(3,45),(4,46),(5,47),(6,48),(7,41),(8,42),(9,21),(10,22),(11,23),(12,24),(13,17),(14,18),(15,19),(16,20),(25,61),(26,62),(27,63),(28,64),(29,57),(30,58),(31,59),(32,60),(33,50),(34,51),(35,52),(36,53),(37,54),(38,55),(39,56),(40,49)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48),(49,53),(50,54),(51,55),(52,56),(57,61),(58,62),(59,63),(60,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,24,47,16),(2,19,48,11),(3,22,41,14),(4,17,42,9),(5,20,43,12),(6,23,44,15),(7,18,45,10),(8,21,46,13),(25,40,57,53),(26,35,58,56),(27,38,59,51),(28,33,60,54),(29,36,61,49),(30,39,62,52),(31,34,63,55),(32,37,64,50)]])

44 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4H4I···4P8A···8P
order12···222224···44···48···8
size11···122222···28···82···2

44 irreducible representations

dim1111112222222
type+++++++-+
imageC1C2C2C2C2C4D4D4Q8D4C4oD4SD16C4oD8
kernelC24.133D4C22.4Q16C23.7Q8C2xC4.Q8C23xC8C22xC8C2xC8C22xC4C22xC4C24C2xC4C23C22
# reps1222184121488

Matrix representation of C24.133D4 in GL5(F17)

10000
01000
0101600
000160
00001
,
10000
016000
001600
000160
000016
,
160000
01000
00100
000160
000016
,
10000
016000
001600
00010
00001
,
160000
02000
04800
000160
000016
,
40000
011800
06600
000016
00010

G:=sub<GL(5,GF(17))| [1,0,0,0,0,0,1,10,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,1],[1,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,16],[16,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,16,0,0,0,0,0,16],[1,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,1,0,0,0,0,0,1],[16,0,0,0,0,0,2,4,0,0,0,0,8,0,0,0,0,0,16,0,0,0,0,0,16],[4,0,0,0,0,0,11,6,0,0,0,8,6,0,0,0,0,0,0,1,0,0,0,16,0] >;

C24.133D4 in GAP, Magma, Sage, TeX

C_2^4._{133}D_4
% in TeX

G:=Group("C2^4.133D4");
// GroupNames label

G:=SmallGroup(128,539);
// by ID

G=gap.SmallGroup(128,539);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,64,422,2019,248]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^4=d,f^2=d*c=c*d,f*a*f^-1=a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<